
AWK(1) General Commands Manual AWK(1)

NAME
awk - pattern scanning and processing language

SYNOPSIS
awk [-f program-file] [-Fc] [program] [variable=value . . .] [filename. . .]

DESCRIPTION
awk scans each of its input filenames for lines that match any of a set of patterns specified in program.
The input filenames are read in order; the standard input is read if there are no filenames. The filename ‘-’
means the standard input.

The set of patterns may either appear literally on the command line as program, or, by using the ‘-f pro-
gram-file’ option, the set of patterns may be in a program-file; a program-file of ‘-’ means the standard in-
put. If the program is specified on the command line, it should be enclosed in single quotes (′) to protect it
from the shell.

awk variables may be set on the command line using arguments of the form variable=value. This sets the
awk variable variable to value before the first record of the next filename argument is read.

With each pattern in program there can be an associated action that will be performed when a line of a file-
name matches the pattern. See the discussion below for the format of input lines and the awk language.
Each line in each input filename is matched against the pattern portion of every pattern-action statement;
the associated action is performed for each matched pattern.

OPTIONS
-f program-file

Use the contents of program-file as the source for the program.

-Fc Use the character c as the field separator (FS) character. See the discussion of FS below.

USAGE
Input Lines

An input line is made up of fields separated by white space. The field separator can be changed by using FS
— see Special Variable Names below. Fields are denoted $1, $2, and so forth. $0 refers to the entire line.

Pattern-action Statements
A pattern-action statement has the form

pattern { action }
A missing action means copy the line to the output; a missing pattern always matches.

Action Statements
An action is a sequence of statements. A statement can be one of the following:

if (conditional) statement [else statement]
while (conditional) statement
for (expression ; conditional ; expression) statement
break
continue
{ [statement] . . .}
variable=expression
print [expression-list] [> expression]
Sprintf format [, expression-list] [> expression]
next skip remaining patterns on this input line
exit skip the rest of the input

Format of the awk Language
statements are terminated by semicolons, NEWLINE characters or right braces. An empty expression-list
stands for the whole line.

expressions take on string or numeric values as appropriate, and are built using the operators +, -, ∗, /, %,
and concatenation (indicated by a blank). The C operators ++ , - - , += , - = , ∗= , /= , and %= are also
available in expressions.

24 September 1987 1

AWK(1) General Commands Manual AWK(1)

variable may be scalars, array elements (denoted x [i]) or fields. Variables are initialized to the null
string. Array subscripts may be any string, not necessarily numeric, providing a form of associative mem-
ory. String constants are quoted ". . . ".

The print statement prints its arguments on the standard output (or on a file if > filename is present), sepa-
rated by the current output field separator, and terminated by the output record separator. The printf state-
ment formats its expression list according to the format template format (see printf(3V) for a description
of the formatting control characters).

Built In Functions
The built-in function length returns the length of its argument taken as a string, or of the whole line if no
argument. There are also built-in functions exp, log, sqrt, and int, where int truncates its argument to an
integer. ‘substr(s, m, n)’ returns the n-character substring of s that begins at position m. ‘sprintf (for-
mat, expression, expression, . . .)’ formats the expressions according to the printf format given by format,
and returns the resulting string.

Patterns
Patterns are arbitrary Boolean combinations (!, , &&, and parentheses) of regular expressions and rela-
tional expressions. Regular expressions must be surrounded by slashes and are as in egrep (see grep(1V)),
Isolated regular expressions in a pattern apply to the entire line. Regular expressions may also occur in re-
lational expressions.

A pattern may consist of two patterns separated by a comma; in this case, the action is performed for all
lines between an occurrence of the first pattern and the next occurrence of the second.

A relational expression is one of the following:

expression matchop regular-expression
expression relop expression

where a relop is any of the six relational operators in C, and a matchop is either ˜ (contains) or !˜ (does not
contain). A conditional is an arithmetic expression, a relational expression, or a Boolean combination of
these.

The special pattern BEGIN may be used to capture control before the first input line is read, in which case
BEGIN must be the first pattern. The special pattern END may be used to capture control after the last input
line is read, in which case END must be the last pattern.

Special Variable Names
A single character c may be used to separate the fields by starting the program with

BEGIN {FS = "c" }

or by using the -Fc option.

Other variable names with special meanings include NF, the number of fields in the current record; NR, the
ordinal number of the current record; FILENAME, the name of the current input file; OFS, the output field
separator (default blank); ORS, the output record separator (default NEWLINE); and OFMT, the output for-
mat for numbers (default %.6g).

EXAMPLES
Print lines longer than 72 characters:

length > 72

Print first two fields in opposite order:

{ print $2, $1 }

Add up first column, print sum and average:

{ s += $1 }
END { print "sum is", s, " average is", s/NR }

Print fields in reverse order:

24 September 1987 2

AWK(1) General Commands Manual AWK(1)

{ for (i = NF; i > 0; - -i) print $i }

Print all lines between start/stop pairs:

/start/, /stop/

Print all lines whose first field is different from previous one:

$1 != prev { print; prev = $1 }

SEE ALSO
grep(1V), lex(1), sed(1V), printf(3V)

A. V. Aho, B. W. Kerninghan, P. J. Weinberger, The AWK Programming Language Addison-Wesley, 1988.

NOTES
The awk command is not changed to support 8-bit symbol names, as this would produce awk source code
that is not portable between systems.

BUGS
Input white space is not preserved on output if fields are involved.

There are no explicit conversions between numbers and strings. To force an expression to be treated as a
number add 0 to it; to force it to be treated as a string concatenate the null string ("") to it.

There is no escape sequence that prints a double-quote. A workaround is to use the sprintf (see
printf(3V)) function to store the character into a variable by its ASCII sequence.

dq = sprintf("%c", 34)

Syntax errors result in the cryptic message ‘awk: bailing out near line 1’.

24 September 1987 3

